
78712

PHYSICAL REVIEW E, VOLUME 65, 016702
Quantum trajectory analysis of multimode subsystem-bath dynamics
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Institute for Theoretical Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas

~Received 10 July 2001; published 18 December 2001!

The dynamics of a swarm of quantum trajectories is investigated for systems involving the interaction of an
active mode~the subsystem! with an M-mode harmonic reservoir~the bath!. Equations of motion for the
position, velocity, and action function for elements of the probability fluid are integrated in the Lagrangian
~moving with the fluid! picture of quantum hydrodynamics. These fluid elements are coupled through the
Bohm quantum potential and as a result evolve as a correlated ensemble. Wave function synthesis along the
trajectories permits an exact description of the quantum dynamics for the evolving probability fluid. The
approach is fully quantum mechanical and does not involve classical or semiclassical approximations. Com-
putational results are presented for three systems involving the interaction on an active mode withM51, 10,
and 15 bath modes. These results include configuration space trajectory evolution, flux analysis of the evolving
ensemble, wave function synthesis along trajectories, and energy partitioning along specific trajectories. These
results demonstrate the feasibility of using a small number of quantum trajectories to obtain accurate quantum
results on some types of open quantum systems that are not amenable to standard quantum approaches
involving basis set expansions or Eulerian space-fixed grids.
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I. INTRODUCTION

The analytical and computational analysis of a relativ
small subsystem interacting with a multimode bath has
extensive history@1#. Because of computational limitation
arising from the large number of degrees of freedom of
composite system, it has not been possible, except in sp
cases, to treat the full dynamical problem quantum mech
cally. Traditional quantum mechanical approaches involv
the use of square integrable basis sets or space-fixed
quickly become intractable as the dimensionality of the s
tem increases. Because of these restrictions, the analys
frequently based upon a quantum subsystem interacting
turbatively or semiclassically with a classical harmonic ba
For example, semiclassical techniques have recently bee
plied to a double well potential and an anharmonic oscilla
interacting with a bath of harmonic oscillators@2–6#. Fre-
quently, the bath degrees of freedom are traced over
attention is focused upon the reduced density matrix for
subsystem. On the assumption that the coupling between
subsystem and the bath is bilinear in the subsystem and
coordinates, the subsystem dynamics can be developed
the Feynman-Vernon influence functional@7–10# and by
quantum master equations@11–16#.

In this study, the subsystem-bath dynamics will be a
proached in a different way, from the viewpoint of the h
drodynamic formulation of quantum mechanics@17–22#. In
this approach, trajectories~streamlines! for a number of ele-
ments of the probability fluidfor the entire systemwill be
developed. Elements of this quantum fluid are correla
through the nonlocal Bohm quantum potential, which
computed on the fly as the equations of motion are integra
to find the quantum trajectories. In addition, along these
jectories the subsystem-bath wave function may be c
puted. A unique feature of the hydrodynamic approach
ported here is that the composite system~subsystem and
bath! is treated quantum mechanically without the need
1063-651X/2001/65~1!/016702~13!/$20.00 65 0167
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imposing dynamical approximations. In addition, the comp
tational effort is concentrated upon a relatively small num
of fluid elements~quaisparticles! that form a moving nonuni-
form grid.

The type of subsystem-bath model that we will consid
with the quantum trajectory method~QTM! @23–32# is ex-
emplified by the potential energy surface displayed in Fig

FIG. 1. A section through the potential energy surface for
M510 bath mode model. The wire mesh shows the potential
ergy in they0 ~subsystem coordinate!-y1 ~bath mode number 1!
subspace. The minimum barrier is 990 cm21 and this occurs along
the y052.0 a.u. cut. The potential minimum in the interior valle
~66 cm21! occurs aty051.16 a.u.,y150.04. A contour map of the
potential is shown in the top plane. The initial probability dens
for the Gaussian wave packet~3800! is shown centered aty0

52.0 a.u.,y150.
©2001 The American Physical Society02-1
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Shown here is a slice through the potential surface for a
bath mode system~this model is considered in more detail
Sec. IV B!. The wire mesh potential surface is plotted abo
the coordinate plane spanned byy0 ~the subsystem coordi
nate! andy1 ~the first bath mode coordinate!. A contour map
of this potential is shown above the wire mesh in the up
horizontal plane. This potential is the sum of an exponen
repulsive term and a repulsive Gaussian barrier along
subsystem coordinate and harmonic potentials for the
bath modes, along with bilinear coupling terms~terms of the
form y0yk! that provide linkage between the subsystem a
bath modes. In addition, this figure also shows the proba
ity density for an initial Gaussian wave packet that
launched from the inner repulsive wall of the potential s
face. The goal is to study the time evolution of eleme
of the probability fluid as they flow over the barrier regio
near y052 a.u. out toward the asymptotic valley regio
(y0→`).

The hydrodynamic formulation of quantum mechan
has its origins in the work of Madelung@17#, de Broglie@18#,
Bohm and co-workers@19–21#. Studies in this area fall into
two domains having different goals and methodologies.
the older of these approaches, theanalytical approach, the
equations of quantum hydrodynamics are used toanalyze the
dynamicsof elements of the probability fluidafter first solv-
ing the time-dependent Schrodinger equation to obtain
wave function. Examples of this approach include analy
of possible quantum chaos in stadium billiard problems@33–
36#, wave packet resonant scattering for the double bar
potential@30#, vibrationally enhanced molecular breakup a
metal surface@37#, the E^ e Jahn-Teller problem@38#, and
wave packet dynamics for circular Rydberg states@39#. The
second approach to quantum hydrodynamics is quite dif
ent; in thesynthetic approach, the quantum hydrodynami
equations are solveddirectly to predict the space-time dy-
namics of elements of the probability fluid. The wave fun
tion is not precomputed as in the analytical approach; rat
it is developed on the fly during integration of the hydrod
namic equations.

The quantum trajectory method@23–29,31,32#, QTM, is
an example of the synthetic approach in which equation
motion for discretized fluid elements are formulated a
solved in the Lagangian, moving with the fluid, picture. T
only approximation made in solving the hydrodynamic eq
tions involves the use of a relatively small number of flu
elements. The QTM has been applied to barrier transmis
@23,26#, a collinear model chemical reaction@25#, nonclassi-
cal reflection from a downhill ramp potential@27#, and elec-
tronic nonadiabaticity in a two electronic state scatter
problem@31,32#. As time goes on, the fluid elements gene
ally form an unstructured grid and this presents compu
tional difficulties in evaluating first and second derivatives
functions known only at the grid points. The movin
weighted least squares algorithm@40–43# is one approach
that has been utilized for derivative evaluation. In anot
approach, derivative evaluation has been performed u
distributed approximating functionals@26# that have been ex
tensively developed by Hoffmanet al. @44#.

In addition, Bittner and Wyatt@28,29# have presented sev
01670
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eral enhancements to the hydrodynamic methodology,
cluding techniques to deal with the node problem@29#. Near
local regions where the quantum amplitude becomes v
small, R→0, the quantum potential may become singu
and as this occurs, another effect, referred to as infla
@45#, sets in. Inflation is to the tendency for fluid elements
move away from developing singularities, the nodes, w
the result that ‘‘holes’’ develop in the density. From a com
putational viewpoint, this presents problems because of
low information density near the node and because of
highly unstructured mesh formed by the fluid elemen
Adaptive regridding and change of representation from
hydrodynamic form of the wave function~involving R andS;
see Sec. III! to the real and imaginary form~involving A and
B, whereA1 iB5ReiS/\! are techniques that may be used
deal with the node problem. So far, these techniques for h
dling the node problem have been tested and impleme
only for one-dimensional barrier transmission problems.

In parallel with our development of the quantum traje
tory method, Rabitz and co-workers@46–50# have also de-
veloped computational methods to integrate the quantum
drodynamic equations in both the Eulerian and Lagrang
pictures. This quantum fluid dynamic~QFD! methodology
has been applied to two-dimensional models of the photo
sociation of NOCl and NO2 @46,48# and to the optimal con-
trol of HCl in an external electric field@49#. In addition,
radial basis functions were investigated for fitting of fun
tions and evaluation of their derivatives in the Lagrang
picture @50#. Also, the Eulerian version of QFD was used
study the dynamics of Gaussian wave packets on fo
dimensional quadratic potential surfaces@47#.

Approximately 30 years before the QTM and the QF
were developed, Weiner and co-workers@51–55# introduced
the first particle method for solving the quantum hydrod
namic equations. Applications made at that time were limi
to Gaussian wave packets evolving on quadratic poten
surfaces. It is important to recall that under these conditio
the initial wave packet always remains Gaussian, although
spreading may occur at different rates along the differ
principal axes. The QTM and the QFD have the enormo
advantage of permitting calculations beyond the parad
‘‘Gaussian packets/quadratic potentials.’’

Other recent studies based upon the hydrodynamic for
lation include the following: development of a quantum tr
jectory approach to the density matrix for dissipative syste
@56#, trajectory dynamics in the double well potential and
magnetic fields@57#, the use of Delaunay tessellation fo
evaluation of the quantum potential@58#, two approaches to
mixed quantum-classical dynamics@59,60#, and a classical
limit of the Eulerian equations of motion for electronic non
diabiatic processes@61#.

A different trajectory approach to quantum dynamic
termed ‘‘quantum dressed classical mechanics,’’ has been
cently developed by Billing@62#. The center of a variable
width Gaussian wave packet follows a classical trajectory
time-dependent preexponential factor expressed in the
crete variable representation~DVR! brings in a set of grid
points centered about the classical trajectory. These
points explore a patch of space around the classical trajec
2-2
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and incorporate quantum corrections, including barrier t
neling. The trajectories followed by these DVR grid poin
are not Bohm trajectories, but there may be some corres
dences between the two methods.

As we mentioned at the start of this section, the focus
this study concerns application of the quantum traject
method to systems consisting of a subsystem interacting
a multimode harmonic bath. The subsystem itself may
general be multimode, but in this study the subsystem
described by a single mode for which the potential is
anharmonic function of position. The total number of mod
considered in these models is far larger than have been
sidered in any previous fully quantum mechanical stud
The emphasis here is upon the trajectory dynamics; ex
for the first model in Sec. IV, averages over many trajecto
are not performed. Computing averaged ‘‘observables’’ us
the hydrodynamic methodology in systems of high dime
sionality is certainly of interest. This important topic, alon
with analyses of dissipation and energy transfer, will be
ferred to another part of this series.

In Sec. II of this study, the Hamiltonian for subsystem
bath models will be described, and anharmonic potent
will be defined for the three subsystems that are analy
later in this study. In Sec. III, the hydrodynamic formulatio
of quantum mechanics will be reviewed, with emphasis up
the computation of trajectories followed by the fluid el
ments. In order to integrate the equations of motion, it
necessary to evaluate derivatives of functions whose va
are known only on the unstructured mesh defined by the fl
elements. As in our earlier studies, the moving weighted le
squares~MWLS! algorithm will be used for this purpos
@40–43#. Some computational considerations connected w
use of the MWLS will also be mentioned in Sec. III. Com
putational results on systems with 1, 10, and 15 bath mo
will be presented in conjunction with the series of figur
that are described in Sec. IV. The emphasis here will be u
the properties of a subset of trajectories that form part of
evolving quantum fluid. Finally, concluding remarks will b
presented in Sec. V.

II. HAMILTONIAN FOR SUBSYSTEM-BATH MODELS

In this study, the one-dimensional subsystem, the ac
mode, is described by the coordinatey0 and theM bath
modes are described by the displacement coordin
$y1,...,yM%. The total system Hamiltonian is partitioned in
subsystem,~harmonic! bath, and coupling contributions,H
5Hs1Hb1Hc , where

Hs5
1

2m0
p0

21V~y0!, ~1!

Hb5
1

2 (
i 51

M H pi
2

mi
1 f iyi

2J , ~2!

Hc5(
i 51

M

ci~y0! f iy0yi . ~3!

In the bath Hamiltonian, the force constants are related to
mode frequencies byf i5miv i

2. In the subsystem Hamil
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tonian, three different anharmonic potentials were used,
cluding a harmonic potential with cubic anharmonicity,
exponential repulsive potential, and a short-range expon
tial repulsive potential augmented with a Gaussian barrie

V1~y0!5 1
2 f 0y0

22ay0
3, ~4!

V2~y0!5A~e2by021!, ~5!

V3~y0!5Ce2dy01D exp@2h~y02yb!2#. ~6!

For the potentialV2 , V2(y0→`)→2A, andb is chosen so
that the potential aty0521 has the input valueV0 . In Eq.
~6!, the barrier maximum forV3 occurs wheny05yb . Po-
tentialsV1 , V2 , andV3 were used in theM51, 15, and 10
mode models, respectively.

Note that theM bath oscillators are not coupled amon
themselves. Quadratic coupling termsyiyj could be included
in future investigations. The coupling potential in Eq.~3! is
bilinear in the subsystem-bath displacementsy0yi . In Sec.
IV, mention will be made of calculations that include highe
order subsystem-bath coupling terms~of the form y0yi

2!. In
order to prevent these coupling terms from becoming a
trarily large asy0 increases, the coupling coefficientsci were
damped wheny0 exceeds a cutoff value. For theM51 and
10 models, ci5ci

0 when y0,y0
c and ci5ci

0 exp@2g(y0

2y0
c)2# otherwise. For theM515 model, a sharp cutoff func

tion was used,ci5ci
0 wheny0,y0

c andci50 otherwise. The
parameters used in the Hamiltonians for these models
listed in Tables I–III; further details are provided later
Sec. IV when the computational results are described.

TABLE I. Parameters for the 2-mode model.

Mass for each mode~a.u.! mi

2000, 2200

Center for each 1D wave packet~a.u.! yi
0

0.4, 0.002

Harmonic bath frequencies~cm21! v i

1000, 2100

Width parameters for 1D Gaussian wave packets~a.u.! b i

b054.556,b1510.525

Subsystem-bath coupling constant~a.u.! ci

0.0 ~Fig. 2! 20.10 ~Fig. 3! 20.17 and 0.00~Fig. 4!

Falloff parameter for coupling constantg50.8 a.u.
Cutoff distance for coupling constantgo

c51.0 a.u.

Initial subsystem kinetic energyEtr
0510 754 cm21

Cubic anharmonicity in subsystem potential
a520.006 92

Initial grid spacing alongy0 Dy050.015 a.u.

Time step for integrationDt51 a.u.
2-3
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III. QUANTUM TRAJECTORY METHOD

A. Quantum hydrodynamic equations

In this section, a brief review will be presented of th
equations needed to implement the quantum trajec
method@23–32#. The hydrodynamic formulation is initiate
by substituting the polar form of the time-dependent wa
function ~this is the Madelung transform@17#!, C(y,t)
5R(y,t)exp@iS(y,t)/\#, into the Schrodinger time-depende
wave equation. In this amplitude-phase decomposition,
real-valued amplitude and action functions are denotedR and
S. An advantage of this representation is thatR and S are
frequently slowly varying functions of position. In terms o
R and S, the probability density and the local flow velocit
are given byr5R2 and v5(¹S)/m. After separating into
real and imaginary parts, and then introducing the Lagra
ian time derivative,d f /dt5] f /]t1v•¹ f , we obtain the
equations of motion

dr

dt
52r¹•v, ~7!

dv
dt

52
1

m
¹~V1Q!. ~8!

Equation~7! is recognized at the Lagrangian version of t
continuity equation, in which the rate of change in the de
sity along a streamline is related to the divergence of
velocity field. Equation~8! is a Newtonian-type equation i
which the flow acceleration is produced by two force ter
on the right side. The classical force acting on the fluid e
ment is f c52¹V, and the quantum force is given byf q
52¹Q. In these equations,V is the potential energy func

TABLE II. Parameters for the 11-mode model.

Mass for each mode~a.u.! mi

2000, 2200, 2400, 2600, 3000, 3200, 3400, 3600, 3700, 38

Center for each 1D wave packet~a.u.! yi
0

0.4, 0.006, 0.0, 0.001, 0.002,20.002, 0.005,20.005, 0.0, 0.0,
0.005

Harmonic bath frequencies~cm21! v i

2100, 1700, 1800, 1900, 2100, 2200, 2300, 2100, 2300, 24

Width parameters for 1D Gaussian wave packets~a.u.! b i

b053.0, b i5(1/2)miv i i 51,2, . . . 10

Subsystem-bath coupling constants~a.u.! ci

20.03,20.02, 0.03,20.02, 0.03,20.02,20.03,20.02,
20.02, 0.03

Falloff parameter for coupling constantsg50.8 a.u.
Cutoff distance for coupling constantsyo

c51.0 a.u.

Initial subsystem kinetic energyEtr
051500 cm21

Parameters for subsystem potential
C5100 cm21, D51000 cm21, d50.3 a.u.,h55.0 a.u.

Initial grid spacing alongy0 Dy050.015 a.u.

Time step for integration Dt51 a.u.
01670
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tion andQ is the time-dependent Bohm quantum potent
@19–21#. If Q is neglected in Eq.~8!, the classical dynamics
of an ensemble is recovered.

The Bohm potential depends upon the Laplacian of
amplitude and is given by

Q~y,t !52
\2

2m

1

R~y,t !
¹2R~y,t !52

\2

2m
r21/2¹2r1/2.

~9!

It is worth noting that the quantum potential is identical
the local shape~as opposed to flow! kinetic energy associ-
ated with the wave packet. The local kinetic energy is d
fined by @22#

Tlocal52
\2

2m
ReH C* ¹2C

C* C J . ~10!

The kinetic energy defined in this way may be partition
@24# Tshape1Tflow , where the flow kinetic energy arises from
the gradient of the action function and is given byTflow
5(¹S)2/(2m). The shape kinetic energy is then given b
the differenceTshape5Tlocal2Tflow and this quantity is iden-
tical to the quantum potential,Q, in Eq. ~9!. Computation of
the quantum potential in Eq.~9! is rendered more accurate
derivatives are evaluated for the exponentiated amplit
@23,46#, R5exp(C), whereC is referred to as theC ampli-
tude. In terms of derivatives of theC amplitude, the quantum
potential is

TABLE III. Parameters for the 16-mode model.

Mass for each mode~a.u.! mi

1000, 1250, 1628, 1253, 1708, 1711, 1529, 1425, 1573, 160
1342, 1636, 1310, 1340, 1583,
1358

Center for each 1D wave packet~a.u.! yi
0

0.08, 0.002,20.005, 0.003, 0.0,20.005, 0.002, 0.007, 0.008,
20.001, 0.003, 0.002,20.006,
0.003, 0.001, 0.009

Harmonic bath frequencies~cm21! v i

6000, 3250, 1083, 1742, 3263, 3662, 1907, 1975, 398, 449
2003, 1914, 2917, 734, 2972

Width parameters for 1D Gaussian wave packets~a.u.! b i

8.9, 18.8, 13.3, 3.4, 7.5, 14.0, 14.0, 6.8, 7.8, 1.6, 1.5, 8.2, 6
9.1, 2.9, 10.1

Subsystem-bath coupling constants~a.u.! ci

0.037,20.02, 0.03, 0.043,20.045, 0.01,20.009,20.002,
20.047, 0.03, 0.026,20.036,20.029,
20.011, 0.043

Cutoff distance for coupling constantsyo
c52.0 a.u.

Initial subsystem kinetic energyEtr
050

Parameters for subsystem potential
A51000 cm21, V055000 cm21, b5 ln(11V0 /A)

Initial grid spacing alongy0 Dy050.06 a.u.

Time step for integrationDt51 a.u.
2-4
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Q52
\2

2m
@¹2C1~¹C!2#. ~11!

The advantage of working withC amplitude is that this
quantity may frequently be fit with high accuracy by a lo
degree polynomial; this is not generally true forR itself.

Closure of the set of dynamical equations is obtained
introducing the Lagrangian equation of motion for the act
function @24#,

dS

dt
5

1

2m
~¹S!22~V1Q!5Lquantum. ~12!

The right side defines the quantum Lagrangian. It meas
the excess of the kinetic energy flow over the total poten
energy, which in turn is the sum of the potentialV and the
quantum potential.

Equations~7!, ~8!, and~12! along with the definition ofQ
in Eq. ~11! constitute the defining equations for the quantu
trajectory method. No approximations were made in deriv
these equations from the time-dependent Schro¨dinger equa-
tion. However, in order to implement these equations,
approximation will be made. The initial wave packet will b
subdivided intoN fluid elementsand the equations of motio
will be used to find the position, flow velocity, probabilit
density, and action function along the trajectories follow
by these elements. The flow of these fluid elements thro
phase space is that of a compressible fluid~generally,¹•v
Þ0!.

From the density and action functions computed alo
each trajectory, the wave function may be synthesized@24#.
Given the wave functionC(y0 ,t0) at positiony0 at timet0 ,
the wave function along the trajectoryy(t) developed by this
fluid element is

C~y,t !5expS 2
1

2 Et0

t

¹•vdtD
3expF2E

t0

t

Lquantum~ t !dtGC~y0 ,t0!. ~13!

In this equation, the first exponential updates theR amplitude
along the trajectory. This term is obtained by analytic in
gration of Eq. ~7! for the density followed by taking the
square root to obtainR(y,t). The second exponential in Eq
~13! updates the action function along the trajectory. T
term is obtained by integrating Eq.~12! for dS/dt along the
trajectory. An important feature of Eq.~13! is that asingle
trajectorymakes the trip from (y0 ,t0) to ~y,t!. A complicated
summation over contributions from trajectories arrivi
along different space-time paths is not required.

The self-consistency of the hydrodynamic equations e
bodies de Broglie’s pilot wave concept@18#. The wave func-
tion determines the motion of the fluid elements through
quantum force, which in turn is a function of the densi
Eqs. ~7! and ~8!, and this evolving ensemble of fluid ele
ments in turn determines the new value for the wave func
at the position of each fluid element, Eq.~13!.
01670
y

es
l

g

n

d
h

g

-

s

-

e
,

n

One final feature to mention concerns the two noncross
rules @22#: ~1! quantum trajectories cannot pass through
same space-time point;~2! quantum trajectories cannot pun
ture through nodal surfaces.

B. Trajectories for fluid elements

The Lagrangian equations of motion are used to upd
thedescriptorfor each of theN fluid elements. At each time
step, the descriptor for each fluid element stores the posit
velocity, C amplitude, and action function,D i(t)
5$yi ,v i ,Ci ,Si%. Each fluid element follows a trajectory tha
may be viewed in both configuration and phase space
addition, the wave function along each trajectory may
found from the known values ofC and S; for example, for
the i th fluid element, lnCi5Ci1 iSi /\.

If the number of bath modes is small, sayM<3, then at
t50 it is convenient to start out the coordinates for ea
fluid element on a Cartesian grid. However, for a larger nu
ber of bath modes, it is neither necessary nor useful to
this. In the studies reported here, we first set up anN point
uniform grid along they0 axis. For each of these points,
random value is then selected for each of theM bath coordi-
nates. Each coordinate is restricted to the regionuyi u<yi

max,
where the maximum value is chosen so that the wave fu
tion for this mode is greater than about 0.01. In this w
each fluid element is assignedM11 initial coordinates and
when viewed in theM11 dimensional coordinate space, th
ensemble ofN fluid elements forms an irregular mesh.

For the system-bath problems studied here, it is not n
essary to cover each coordinate direction with a large nu
ber of points, thus forming~at t50! a rectangular lattice in
the (M11)-dimensional space. In this unfavorable case,
total number of points would scale roughly as^N& (M11),
where^N& is the average number of points along each axis
would be reasonable to expect that^N&.10. If this were the
case, theM510 and 15 mode systems used in this stu
would be beyond current computational capabilities. For
computations reported later, the values of^N& are 1.4 and 1.6
for theM515 and 10 bath mode systems, respectively. Fr
the viewpoint of traditional space-fixed grid calculation
these values are startlingly low.

At t50, the initial wave function is assumed to be facto
izable into the product ofM11 normalized Gaussian~one-
dimensional! wave functions times a translational function~a
plane wave! that specifies the initial action function

C~y,t50!5)
i 50

M

~b i /p!1/4exp@2b i~yi2yi
0!2#

3exp@ iS~y0 ,t50!/\#. ~14!

The width parametersb i and the centersyt
0 will be specified

later when the computational results are presented. For
M515 model, the initial wave packet is chosen to be s
tionary, S(y,t50)50. For the M51 and 10 models, the
wave packet is launched with an initial momentum in t
1y0 direction,S(y0 ,t50)5(2m0Etr

0)1/2(y02y0
0), whereEtr

0

is the initial translational energy. Although the wave functi
in Eq. ~14! is a multidimensional Gaussian, there is no r
2-5
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quirement in the subsequent dynamics that the total w
function be either factorizable or Gaussian in any degree
freedom.

C. Least squares fitting and computation of derivatives

Given a functionf (y) specified only atN points in the
(M11)-dimensional spaceR(M11), it is necessary to evalu
ate first and second derivatives at these points in orde
integrate the equations of motion. The quantities that nee
be evaluated at the positions of the fluid elements are¹C,
¹2C, ¹Q, and¹•v. In order to evaluate these derivative
we will use the same algorithm that has been used in ea
applications of the QTM, namely, the MWLS algorithm.
order to perform the fit around point~fluid element! j, we
first select a set ofnp nearest neighbor points~including the
‘‘central’’ point j!, these points define the stencil. Within th
stencil, the function is expanded in a set ofnb local basis
functions$pk(y2yj )%,

f ~y!5 (
k51

nb

ak~ t !pk~y2yj !, ~15!

where the expansion coefficients$ak% depend upon the time
at which the fit is performed and they are found by solvin
system of linear algebraic equations. The accuracy of
local fit is determined by the number and nature of the ba
functions in addition to the number of points included in t
stencil. In order to restrict the field of view, a Gaussi
weight function centered at pointj is used. Once the expan
sion coefficients have been determined, the partial der
tives of ordern may be evaluated directly at the position
the central node

]~n! f

]y1
~n! 5 (

k51

nb

akS ]~n!pk

]yt
~n! D . ~16!

Because the basis functions are monomials, only a sin
term survives on the right side of this equation.

In this study, it will be assumed that the input function c
be accurately fit around pointy0 by basis setB consisting of
monomials of degree less and equal to 2, including the c
stant term$1%, linear terms$z0 ,z1 ,...%, diagonal quadratic
terms $z0

2,z1
2,...%, and off-diagonal quadratic term

$z0z1 ,z1z2 ,...%, where thezi are local displacement coord
nates,zi5yt2yt

0, i 50,1, . . . ,M . For the spaceR(M11), the
dimension of B is given by nb5112(M11)1M (M
11)/2. For example, for theM510 model considered late
nb578, and for theM515 model,nb5153. Since the num-
ber of basis functions increases asM2, it is not efficient to
use this type of polynomial basis forM.15 ~although we
have done some computations withM520!.

In practice, both theC amplitude and the action functio
are fit to the previously mentioned basis set expresse
displacement coordinates. As a result, thelocal fit to the
wave functionnear pointy0 is given by the complex Gauss
ian function

C~y;y0!5exp@c01c1~y2y0!1~y2y0! trc2~y2y0!#,

in which (y2y0) is the (M11)-dimensional displacemen
vector,c0 andc1 are complex-valued coefficient vectors, a
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c2 is an (M11)-dimensional~complex-valued! square ma-
trix. This local Gaussian fit does not constrain the over
~global! wave function to being Gaussian in shape.

D. Computational considerations

Approximately 90% of the computational effort involve
in advancing one time step is spent in the least squares fi
procedure. In order to improve the efficiency of this proc
dure, two techniques were employed to reduce the numbe
arithmetic operations. First, in order to find the (np21) an-
cillary points surrounding the central point in the stencil,
index array is generated to sort the points by increasing
tance from the central point. In order to reduce the numbe
operations, this index array is generated once everyDsort time
steps rather than at the start of every time step.~In practice,
Dsort520 was used.! This increment must be decreased if a
when the dynamics is complicated by fluid elements cha
ing their relative positions.

The least squares procedure was accelerated by aban
ing at each time step the direct solution~using Gaussian
elimination, GE! of the algebraic equations for the expansi
coefficients$ak% used in Eq.~15!. In matrix notation, the
equations for these coefficients have the form@40# Ba5c,
where B is an nb3nb square matrix, anda and c are nb
31 column vectors. MatricesB andc are known in terms of
the local basis functions and the input function values eva
ated at all points of the stencil. Rather than directly solvi
these matrix equations at each time step, an iterative pr
dure was used. If we partition the square matrix into diago
~D!, lower triangular~L !, and upper triangular submatrice
~U!, the matrix equation may be rewrittenDa5c2(L
1U)a5c2(B2D)a. This suggests the following simple it
erative scheme~Jacobi iteration! for the vectora,

ak115D21@c2~B2D!ak#, ~17!

where the first vectora1 must be specified to prime the itera
tive process. If the newly generated components ofak11 are
used on the right side as soon as they are computed,
algorithm is referred to as Gauss-Seidel iteration~GSI!. Al-
together,kmax iteration steps are used, this number is fou
by monitoring the change in the iteration vector ask in-
creases. This iteration procedure is implemented in the qu
tum trajectory program in the following way:~1! the direct
algorithm based upon GE is used to generate the initial v
tor a1; ~2! this vector is then used to iteratively generate t
solution vectors for the followingDGS time steps. At this
point, a fresh solution vector is generated using GE.

In test calculations for a model withM54 bath modes
usingN5101 fluid elements, 21 quadratic basis functions
the local fit, 30 points in the stencil, andkmax510 Gauss-
Seidel iterations, the speedup~in %! usingDGS iterations is
defined as S(DGS)5100@Tdirect2Titerative(DGS)#/Tdirect,
where the numerator is the saving in CPU time and the
nominator is the time for the noniterative~direct! calculation.
As DGS increases, the accuracy of the quantities stored in
descriptor gradually decreases. To counter this tendency,DGS
was kept relatively low, in the range 2–5. This led to savin
in CPU time in the range 20–30 %.
2-6
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IV. COMPUTATIONAL RESULTS

A. The MÄ1 dissociative model: Wave function
and flux analysis

Our first application involves an anharmonic oscillator
teracting with a single bath mode. Parameters for the Ha
tonian used in this model are given in Table I and cont
maps of the potential surfaces in the absence of subsys
bath coupling (c50) and with coupling (c520.10) are
shown in Figs. 2~a! and 3~a!, respectively. The subsystem
potentialV1(y0) consists of a cubic anharmonic term add
to a harmonic potential. The local minimum of the potent
lies at y05y150 and has the value zero. In Fig. 2~a!, the
saddle point occurs aty052.0 a.u.,y150 and has the value
6077 cm21, while in Fig. 2~b!, the saddle point occurs a
y052.04 a.u.,y150.09 a.u., and has the value 5906 cm21.
Also shown in these figures is a dashed curve~a circle of
radius r 52 a.u.! across which the flux will be calculated
Also note in Fig. 3~a! that the principal axis of the potentia
energy surface is tilted in the counterclockwise directionu
50.042 rad) due to the coupling term in the potential.

In Figs. 2 and 3, the time dependence of the fluid e
ments~large dots! are shown along with contour maps di
playing the real part of the wave function, Re@C(y0 ,y1)#

FIG. 2. ~a! Contour map of the potential energy surface for t
M51 model. The subsystem-bath coupling coefficient has been
to zero. The circular dashed curve is the surface across which
flux is calculated. Parts~b!–~e! show the time development of th
fluid elements~dots!. In addition, contours of the real part of th
wave function~interpolated from the values at the dots! are shown.
01670
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5R(y0 ,y1)cos@S(y0,y1)/\#. Although this quantity oscillates
along they0 coordinate, nodes do not develop in the dens
These figures were generated from the descriptors carrie
the nodes by the following procedure. Since theC amplitude
(R5eC) and the action~S! are known only at the position
of the fluid elements, it is necessary to interpolate~using
MWLS! from this irregular grid onto a uniform mesh cove
ing the display region before invoking the contour routin
An important feature of the Lagrangian formulation is app
ent from these figures, smoothed quantities can be inte
lated from information available at a relatively small numb
of points on the irregular mesh. When we go to systems w
higher dimensionality, this advantage becomes even m
significant.

From information carried in the descriptors for the flu
elements, average values of dynamical quantities may be
culated. For example, the following expression is used
calculate the time dependence of the rate of flow of proba
ity across a boundary surface~S!

R~ t !5E
S

j •ndA, ~18!

wheren is an outward directed unit normal vector,j 5rv,
anddA is an element of area. In addition, the time integral
the rate gives the decay probability from the initial localiz
state

et
he

FIG. 3. ~a! Contour map of the potential energy surface for t
M51 model. The subsystem and the bath are coupledc
520.10). The circular dashed curve is the surface across w
the flux is calculated. Parts~b!–~e! show the time development o
the fluid elements. In addition, contours of the real part of the w
function are shown.
2-7
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Prob~ t !5E
0

t

R~t!dt. ~19!

In order to obtain a continuous flux (rv) from the descrip-
tors carried by the discrete fluid elements flowing acrossS, it
is necessary to interpolate the density and velocity carried
the fluid elements onto the boundary surface. Using
technique, flow rates and decay probabilities were calcula
and these are shown for in Fig. 4 for two cases,
subsystem-bath coupling~continuous curves! and for a sys-
tem where coupling is included~dashed curves, forc
520.17!. @A different value for the coupling constant~c!
was used in this figure compared to Fig. 3 in order to obt
larger differences in the flux and probability between thec
50 andcÞ0 cases.# By 12.5 fs, the flow rate has decreas
to about 3% of the maximum value, and the decay proba
ity has increased to about 0.93.

B. The MÄ10 barrier model

In Sec. I, reference was made to the potential energy
face and the initial wave packet for theM510 system shown
in Fig. 1. The parameters used in this potential along w
other quantities needed to specify the model are listed
Table II. The bath mode frequenciesv1 range from 1700 to
2400 cm21 and the masses range from 2000 to 3800 a.u.
this model, the initial wave packet was discretized intoN
5101 fluid elements and the Lagrangian hydrodynam
equations were integrated for 1200 time steps (Dt51 a.u
50.024 fs). The initial wave packet was launched from
inner repulsive wall of the potential with a translational e
ergy of 1500 cm21 and with the initial momentum in the
1y0 direction. Each time step in the numerical integration
the equations of motion required about 7 sec of CPU time
one processor of the Cray SV1.

FIG. 4. ~a! Rate of flow of probability across the boundary su
face~dashed lines in Figs. 2 and 3! and~b! time integral of the rate,
the decay probability. The continuous curve corresponds to the
coupling case shown in Fig. 2 and the dashed curve was obta
using the coupling coefficientc520.17.
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1. Density and velocity maps

Figure 5 shows velocity maps for theN particles in the
(y0 ,y1) subspace at three times~a! t50, ~b! 59.5 fs, and~c!
t514.25 fs. The size of the ball at the tail of each veloc
vector is related nonlinearly to the density carried by th
particle. @The radius of the ball is given byr
5A(r/rmax)

(0.1), wherermax is the largest value of the den
sity at this time step.# The velocity vectors shown here ar
projections of theM11 component vectors into the (y0 ,y1)
plane. In part~a!, all vectors are of the same length and th
are directed along the1y0 axis, this is in accord with the
initial condition. In part~b!, 28 of the fluid elements have
crossed the barrier aty052 a.u. and they are starting to a
celerate downhill into the asymptotic valley. The veloci
vectors are shorter for the remaining fluid elements that
still decelerating on the uphill side of the barrier (y0
,2 a.u.). In part~c!, many of the fluid elements have picke
up small velocity components along they1 direction, this
represents energy transfer to the bath from the subsys
modey0 . Also, by this time step, 69 of the fluid elemen
have made it over the barrier.

2. Trajectory evolution

The configuration space-time evolution for five traject
ries from this ensemble are plotted in Fig. 6. In this figu
the time dependence of the (y0 ,y1) coordinate pair is shown
for trajectories 20, 40, 60, 80, and 100. In addition, the p
jection of trajectory 100 onto the three coordinate planes
also shown. Trajectories 20 and 100 are launched from n
the back and front ends~larger value fory0! of the swarm,
respectively. It is evident that trajectories 20, 40, and
decelerate as they approach the barrier region~this occurs at
about t515 fs! and that trajectories 80 and 100 acceler
quickly to larger values ofy0 after crossing the barrier.

3. Wave function synthesis along trajectories

We mentioned in Sec. III A that the wave function can
synthesized along each trajectory as it evolves through
(M11)-dimensional space. The three-dimensional plots d
played in Fig. 7 show the time dependence of the wave fu
tion for two trajectories selected from the ensemble. For e
horizontal time slice, the radial distance from the vertic
axis isr1/2 and the twist of the parametrized functionC(t)
around this axis is generated by the phaseS(t)/h. Figure
7~a! for trajectory 72 shows gradually increasing density
the trajectory moves toward the barrier maximum that
reached for times near the top of the figure. Figure 7~b! for
trajectory 45 shows an increase of density near 15 fs, but
density starts to decrease as the trajectory begins acceler
on the downhill side of the barrier~neart520 fs!.

4. Dynamical analysis

Further dynamical analysis for trajectory 72 is shown
the four parts of Fig. 8. Figure 8~a! displays they0 compo-
nents of the forces acting on this fluid element. Referenc
Eq. ~8! shows that the acceleration of a fluid element is d
to the ‘‘classical’’ force arising from the gradient of the po

n-
ed
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FIG. 5. Velocity maps projected into the (y0 ,y1) plane at three
times:~a! t50, ~b! t59.5 fs, and~c! t514 fs. The radius of the bal
at the tail of each vector is proportional to the density carried
this fluid element. The vertical dotted line shows the position of
barrier maximum.
01670
tential V acting in concert with the quantum force arisin
from the gradient of the quantum potentialQ. The time de-
pendence of both components of these forces are show
Fig. 8~a!. During some time intervals, the classical and qua
tum forces act together in the same direction, but at ot
times they work to oppose each other. The classical forc
positive fromt50 until 4.5 fs and remains negative for th
remaining times shown in this figure. The quantum force
positive until 2.1 fs, becomes negative until 8.3 fs, and th
becomes positive again until 15.9 fs. What is, at first, s
prising about the classical force is that this fluid elemen
moving downhill on the potentialV2(y0) until 3.2 fs and
then uphill toward the barrier maximum that is reached
11.6 fs. Thus for part of the time that the fluid element
moving uphill, between 3.2 and 4.5 fs, the classical force
negative, directed away from the barrier maximum. The o
gin of this odd feature is that the classical force is made up
two components, the ‘‘pure’’ mode-zero component@arising
from the gradient ofV2(y0)# and a contribution from the
gradient of the coupling term. During some time interva
these two contributions have opposite signs and parti
cancel.

Continuing with the analysis for trajectory 72, Fig. 8~b!
shows the time dependence of the potentialsV andQ. Start-
ing at t50, V decreases for the first 6 fs, then gradua
increases when the trajectory moves uphill toward the bar
maximum. At 11.6 fs, the barrier is crossed, butV ~the total
potential energy! does not decrease because a fraction of
potential energy is stored in the bath modes. Figure 8~c!
shows the time dependence of the total potential energyV
1Q, and the kinetic energy, KB. The kinetic energy initial
increases whileV1Q decreases. The kinetic energy then d
creases for the first part of the uphill journey. The kine
energy begins to increase before the barrier maximum w
the bath modes acquire energy. Finally, Fig. 8~d! shows the

y
e

FIG. 6. Time dependence of trajectories 20, 40, 60, 80, and
in the (y0 ,y1) plane. The projections of trajectory 100 upon th
three coordinate planes are also shown. Trajectory 100 is assoc
with a fluid element near the leading edge of the wave packet.
2-9
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ROBERT E. WYATT AND KYUNGSUN NA PHYSICAL REVIEW E65 016702
action function and the quantum Lagrangian@see Eq.~12!#.
The quantum Lagrangian is negative at all times because
kinetic energy remains lower than the total potential ene
as shown in Fig. 8~c!. The action function starts out positive
but becomes increasingly negative as time increases bec
of the negative values forLquantum.

5. Higher-order coupling

Most studies of subsystem-bath dynamics use the bilin
coupling potential in Eq.~3!. In order to investigate the effec
of higher-order coupling terms, a cubic coupling potent
was added to the bilinear term. This coupling potential
given by

Hc
cubic5(

i 51

M

di~y0! f iy0yi
2, ~20!

FIG. 7. Time dependence of the wave function for trajector
72 @part ~a!# and 45@part ~b!#. The real and imaginary parts of th
wave function are plotted vs time. At each time, the radius of
cylinder isr1/2 and the phase angle isS/\.
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Again, the coupling coefficients are damped at large val
of y0 using the same damping function as for the biline
coupling term. In this study, the coefficients are given
di5(21) jz ~wherez50.1 a.u.! and this is multiplied by the
exponential damping function wheny0 exceeds a cutoff
value. Similar to Fig. 6 for the bilinear coupling case, F
9~a! shows the time dependence of the (y0 ,y1) coordinate
pair for five trajectories, numbers 20, 40, 60, 80, and 1
Both the bilinear and the cubic coupling potentials were
cluded in the dynamics. Over the 20 fs time scale shown
this figure, only trajectory 20 fails to make it over the barri
After surmounting the barrier, the trajectories quickly acc
erate toward the asymptotic valley.

6. Random coupling

In the previous calculations, once the sets of coupl
coefficients$ci% and $di% were specified att50, they re-
mained constant throughout the time evolution of the traj
tories. However, it is possible to impart a time dependenc
these coefficients, to simulate a fluctuating linkage betw
the subsystem and the bath. In another set of calculati
everyD r time steps, the signs and magnitudes of the coe
cients were varied randomly. In particular, the coefficie
were chosen according toci56rcmax and di56r 8dmax,
wherer and r 8 are random numbers chosen from a unifo
distribution on the interval~0, 1!, the signs were also chose
randomly, andcmax and dmax are maximum allowed value
~cmax50.03 a.u. anddmax50.12 a.u.!. A different random
number was used when each new coefficient was calcula
The coupling coefficients were altered everyD r520 time
steps~0.48 fs!. Figure 9~b! shows the time dependence of th
(y0 ,y1) coordinate pair for five trajectories launched fro
the same initial conditions as those in Fig. 9~a!. Compared
with the trajectories in Fig. 9~a!, these trajectories remai
more localized in the region near or before the barrier;
cursions into the asymptotic valley are delayed.

C. The MÄ15 direct decay model

Limited computational results will be reported for theM
515 direct~barrier-free! dissociative model using the bilin
ear~nonrandom! coupling Hamiltonian in Eq.~3!. In contrast
to the potential used for theM510 model, the potentialV2
given in Eq.~5! lacks a barrier along they0 coordinate. Pa-
rameters used in the Hamiltonian for this model are listed
Table III. The bath mode frequenciesv i range from 450 to
6000 cm21 and the massesmi range from 1000 to abou
1700 a.u. The CPU time for this model is 76 sec per ti
step, about 11.5 times larger than the CPU time required
the M510 model. For the 15 bath mode model,N5201
trajectories were used to discretize the initial wave packe

The configuration space-time evolution for two traject
ries from the ensemble is shown in Fig. 10~a!. Similar to the
trajectory plots shown earlier in Figs. 6 and 9, this figu
shows the time dependence of the (y0 ,y1) coordinate pair
for trajectories 120 and 160. Both of these trajectories m
to relatively large values ofy0 by aboutt510 fs, although
trajectory 160 temporarily slows down neart56 fs. Along
each trajectory, the total energy (Etot) may be partitioned into

s

e
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FIG. 8. Dynamical results for trajectory 72:~a! time dependence of they0 components of the classical and quantum forces,~b! classical
(V) and quantum~Q! potential energies,~c! total potential energy (V1Q) and kinetic energy~KE!, ~d! action function~S! and quantum
Lagrangian (Lquantum).
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subsystem (Esystem) and bath (Ebath) components.~There is
some ambiguity about where to put the coupling energy,
for this study, it was included in with the bath energy.! For
this trajectory, the fraction of energy in the subsystem is th
f system5Esystem/Etot . Figure 10~b! shows the time depen
dence of the two fractionsf systemand f bath (512 f system) for
trajectory 72. At early times, the subsystem energy increa
slightly, but for later times (t.8 fs) most of the energy ha
migrated into the 15 bath modes.

V. CONCLUSIONS

The quantum trajectory method had been applied to m
tidimensional systems consisting of an active mode, the s
system, interacting with a bath ofM uncoupled harmonic
oscillators. In this approach, the time-dependent dynamic
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elements of the probability fluid are obtained by integrati
the quantum hydrodynamic equations in the Lagrangian
ture of fluid mechanics. Along each quantum trajectory,
wave function may be computed, which in addition to t
time evolving density, flow velocity, action function, and th
classical and quantum forces leads to a detailed, mechan
description of the dynamics. As quantum trajectories
these and other related models are computed and anal
using the quantum hydrodynamic approach, it is likely th
new insights will arise and that new approximations will
suggested.

The three systems chosen for analysis in this study h
the common feature that wave function nodes do not fo
during passage of the wave packet from small to large va
of the subsystem coordinate. If nodal surfaces were to fo
the computational analysis would become more complica
2-11
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ROBERT E. WYATT AND KYUNGSUN NA PHYSICAL REVIEW E65 016702
and some of the techniques~such as adaptive remeshin!
discussed recently by Wyatt and Bittner@29# could be used to
propagate the fluid elements. In spite of this, there are lik
a number of multidimensional systems where node forma
is not a dominant feature and for these the quantum hy
dynamic equations presented here will be a viable way
obtain accurate quantum mechanical results without inv
ing dynamical approximations~such as the quantum
subsystem/classical-bath model!.

Additional results on subsystem-bath dynamics~influence

FIG. 9. Time dependence of trajectories 20, 40, 60, 80, and
in the (y0 ,y1) plane. Trajectory 100 is associated with a fluid e
ment near the front edge of the wave packet.~a! The subsystem-
bath coupling includes~time-independent! bilinear and cubic terms
~b! The bilinear and cubic coupling coefficients are randomiz
every 0.48 fs.
01670
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of the bath spectral density, dissipation of energy and ph
from the subsystem, decoherence, and dynamical avera!
will be presented in other parts of this series@63#.
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FIG. 10. TheM515 bath mode model.~a! Time dependence o
trajectories 120 and 160 in the (y0 ,y1) plane.~b! Energy partition-
ing the time dependence of the fraction of energy in the subsys
and the fraction in the bath are shown for trajectory 160.
2-12



H

cs

to

s.

ys

to,

um

s

h.,

ys.

ys.

QUANTUM TRAJECTORY ANALYSIS OF MULTIMODE . . . PHYSICAL REVIEW E 65 016702
@1# U. Weiss,Quantum Dissipative Systems~World Scientific, Sin-
gapore, 1999!, pp. 17–20.

@2# J. Shao and N. Makri, J. Phys. Chem. A103, 7753~1999!.
@3# M. Topaler and N. Makri, J. Chem. Phys.101, 7500~1994!.
@4# M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys.114,

9220 ~2001!.
@5# R. Gelabert, X. Gimenez, M. Thoss, H. Wang, and W.

Miller, J. Chem. Phys.114, 2572~2001!.
@6# H. Wang, M. Thoss, and W. H. Miller, J. Chem. Phys.112, 47

~2000!.
@7# A. O. Calderia and A. J. Legget, Physica A121, 587 ~1983!.
@8# A. O. Calderia and A. J. Legget, Ann. Phys.~N.Y.! 149, 374

~1983!.
@9# H. Grabert, P. Schramm, and G. L. Ingold, Phys. Rep.168, 115

~1988!.
@10# J. Cao, L. W. Ungar, and G. A. Voth, J. Chem. Phys.104, 4189

~1996!.
@11# D. F. Walls and G. J. Milburn, Phys. Rev. A31, 2403~1985!.
@12# C. M. Savage and D. F. Walls, Phys. Rev. A32, 2316~1985!.
@13# B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D45, 2843

~1992!.
@14# J. P. Paz, S. Habib, and W. H. Zurek, Phys. Rev. D47, 488

~1993!.
@15# E. G. Petrov, Phys. Rev. E57, 94 ~1998!.
@16# G. Stock, Phys. Rev. E51, 3038~1995!.
@17# V. E. Madelung, Z. Phys.40, 322 ~1926!.
@18# L. de Broglie,An Introduction to the Study of Wave Mechani

~Dutton, New York, 1930!.
@19# D. Bohm, Phys. Rev.85, 167 ~1952!; 85, 180 ~1952!.
@20# D. Bohm and B. J. Hiley, The Undivided Universe

~Routeledge, London, 1993!.
@21# C. Philippidis, C. Dewdney, and B. J. Hiley, Nuovo Cimen

Soc. Ital. Fis., B52B, 15 ~1979!.
@22# P. R. Holland,The Quantum Theory of Motion~Cambridge

University Press, New York, 1993!.
@23# C. L. Lopreore and R. E. Wyatt, Phys. Rev. Lett.82, 5190

~1999!.
@24# R. E. Wyatt, Chem. Phys. Lett.313, 189 ~1999!.
@25# R. E. Wyatt, J. Chem. Phys.111, 4406~1999!.
@26# R. E. Wyatt, D. J. Kouri, and D. K. Hoffman, J. Chem. Phy

112, 10 730~2000!.
@27# C. L. Lopreore and R. E. Wyatt, Chem. Phys. Lett.325, 73

~2000!.
@28# E. R. Bittner and R. E. Wyatt, J. Chem. Phys.113, 8888

~2000!.
@29# R. E. Wyatt and E. R. Bittner, J. Chem. Phys.113, 8898

~2000!.
@30# K. Na and R. E. Wyatt, Int. J. Quantum Chem.81, 206~2001!.
@31# R. E. Wyatt, C. L. Lopreore, and G. Parlant, J. Chem. Ph

114, 5113~2001!.
01670
.

.

@32# C. L. Lopreore and R. E. Wyatt~unpublished!.
@33# O. F. de Alcantara Bonfim, J. Florencio, and F. C. Sa Barre

Phys. Rev. E58, 6851~1998!.
@34# S. Sengupta and P. K. Chattaraj, Phys. Lett. A215, 119~1996!.
@35# H. Frisk, Phys. Lett. A227, 139 ~1997!.
@36# R. H. Parmenter and R. W. Valentine, Phys. Lett. A201, 1

~1995!.
@37# Z. S. Wang, G. R. Darling, and S. Holloway~unpublished!.
@38# H. Carlsen, E. Sjoqvist, and O. Goscinski, Int. J. Quant

Chem.75, 409 ~1999!.
@39# H. Carlsen and O. Goscinski, Phys. Rev. A59, 1063~1999!.
@40# P. Lancaster and K. Salkauskas,Curve and Surface Fitting

~Academic, New York, 1986!.
@41# P. Lancaster and K. Salkauskas, Math. Comput.37, 141

~1981!.
@42# T. Belytschko, Y. Y. Lu, and L. Gu, Int. J. Numer. Method

Eng.37, 229 ~1994!.
@43# B. Nayroles, G. Touzot, and P. Villon, Computational Mec

Berlin 10, 307 ~1992!.
@44# D. K. Hoffman, T. L. Marchioro II, M. Arnold, Y. Huang, W.

Zhu, and D. J. Kouri, J. Math. Chem.20, 117 ~1996!.
@45# N. Pinto-Neto and E. Sergio Santini, Phys. Rev. D59, 123517

~1999!.
@46# D. K. Dey, A. Askar, and H. A. Rabitz, J. Chem. Phys.109,

8770 ~1998!.
@47# D. K. Dey, A. Askar, and H. A. Rabitz, Chem. Phys. Lett.297,

247 ~1998!.
@48# F. Sales Mayor, A. Askar, and H. A. Rabitz, J. Chem. Ph

111, 2423~1999!.
@49# B. K. Dey, H. A. Rabitz, and A. Askar, Phys. Rev. A61,

043412~2000!.
@50# X. G. Hu, T. S. Ho, and H. A. Rabitz, Phys. Rev. E61, 5967

~2000!.
@51# J. H. Weiner and Y. Partom, Phys. Rev.187, 1134~1969!.
@52# J. H. Weiner and Y. Partom, Phys. Rev. B1, 1533~1970!.
@53# J. H. Weiner and A. Askar, J. Chem. Phys.54, 1108~1971!; 54,

3534 ~1971!.
@54# A. Askar and J. H. Weiner, Am. J. Phys.39, 1230~1971!.
@55# H. Y. Kim and J. H. Weiner, Phys. Rev. B7, 1353~1973!.
@56# J. Maddox and E. R. Bittner, J. Chem. Phys.115, 6309~2001!.
@57# E. R. Bittner, J. Chem. Phys.112, 9703~2000!.
@58# D. Nerukh and J. H. Frederick, Chem. Phys. Lett.332, 145

~2000!.
@59# E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Ph

113, 9369~2000!.
@60# O. V. Prezhdo and C. Brooksby, Phys. Rev. Lett.86, 3215

~2001!.
@61# J. C. Burant and J. C. Tully, J. Chem. Phys.112, 6097~2000!.
@62# G. D. Billing, J. Chem. Phys.114, 6641~2001!.
@63# K. Na and R. E. Wyatt~unpublished!.
2-13


